
www.manaraa.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987

Checkpointing and Rollback-Recovery for Distributed
Systems

RICHARD KOO AND SAM TOUEG

Abstract-We consider the problem of bringing a distributed system
to a consistent state after transient failures. We address the two com-
ponents of this problem by describing a distributed algorithm to create
consistent checkpoints, as well as a rollback-recovery algorithm to re-
cover the system to a consistent state. In contrast to previous algo-
rithms, they tolerate failures that occur during their executions. Fur-
thermore, when a process takes a checkpoint, a minimal number of
additional processes are forced to take checkpoints. Similarly, when a
process rolls back and restarts after a failure, a minimal number of
additional processes are forced to roll back with it. Our algorithms
require each process to store at most two checkpoints in stable storage.
This storage requirement is shown to be minimal under general as-
sumptions.

Index Terms-Checkpoint, consistent state, distributed systems,
fault-tolerance, rollback-recovery.

I. INTRODUCTION
CHECKPOINTING and rollback-recovery are well-
_known techniques that allow processes to make prog-

ress in spite of failures [1111. The failures under consid-
eration are transient problems such as hardware errors and
transaction aborts, i.e., those that are unlikely to recur
when a process restarts. With this scheme, a process takes
a checkpoint from time to time by saving its stateon sta-
ble storage [8]. When a failure occurs, the process rolls
back to its most recent checkpoint, assumes the state saved
in that checkpoint, and resumes execution.
We first identify consistency problems that arise in ap-

plying this technique to a distributed system. We then
propose a checkpoint algorithm and a rollback-recovery
algorithm to restart the system from a consistent state
when failures occur. Our algorithms prevent the well-
known "domino effect" as well as livelock problems as-
sociated with rollback-recovery. In contrast to previous
algorithms, they are fault-tolerant and involve a minimal
number of processes. With our approach, each process
stores at most two checkpoints in stable storage. This
storage requirement is shown to be minimal under general
assumptions.

Manuscript received January 31, 1986; revised June 16, 1986. R. Koo
was supported by the Defense Advanced Research Projects Agency (DoD)
under ARPA Order 5378, Contract MDA903-85-C-0124, and by the Na-
tional Science Foundation under Grants DCR-8412582 and MCS 83-03135.
S. Toueg was supported by the National Science Foundation under Grants
MCS 83-03135 and DCR-8601864.

The authors are with the Department of Computer Science, Cornell Uni-
versity, Ithaca, NY 14853.

IEEE Log Number 8611367.

The paper is organized as follows. We discuss the no-
tion of consistency in a distnrbuted system in Section II,
and describe our system model in Section III. In Section
IV we identify the problems to be solved. Sections V and
VI contain the checkpoint and rollback-recovery algo-
rithms, respectively. The algorithms are extended for
concurrent executions in Section VII. In Section VIII we
consider optimizations. Section IX contains our conclu-
sion.

II. CONSISTENT GLOBAL STATES IN DISTRIBUTED
SYSTEMS

The notion of a consistent global state is central to rea-
soning about distributed systems. It was considered in [9],
[10], [12], and formalized by Chandy and Lamport [2].
In this section, we summarize their.ideas.

In a distributed computation, an event can be a spon-
taneous state transition by a process, or the sending or
receipt of a message. Event a directly happens before
event b [7] if and only if

1) a and b are events in the same process, and a occurs
before b; or

2) a is the sending of a message m by a process and b
is the receiving of m by another process.
The transitive closure of the directly happens before re-

lation is the happens before relation. If event a happens
before event b, b happens after a. (We abbreaviate hap-
pens before, "before" and happens after, "after.")
A local state of a process p is defined by p's initial state

and the sequence of events that occurred at p. A global
state of a system is a set of local states, one from each
process. The state of the channels corresponding to a
global state s is the set of messages sent but not yet re-
ceived in s. We can depict the occurrences of events over
time with a time diagram, in which horizontal lines are
time axes of processes, points are events, and arrows rep-
resent messages from the sending process to the receiving
process. In this representation, a global state is a cut di-
viding the time diagram into two halves. The state of the
channels comprises those arrows (messages) that cross the
cut. Fig. 1 is a time diagram for a system of four pro-
cesses.

Informally, a cut (global state) in the time diagram is
consistent if no arrow starts on the right-hand side and
ends on the left-hand side of it. This notion of consistency
fits the observation that a message cannot be received be-

0098-5589/87/0100-0023$01.00 © 1987 IEEE

23

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 17, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

www.manaraa.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987

C C0
p

q

r _ 1

Fig. 1. Consistent and inconsistent cuts.

fore it is sent in any temporal frame of reference. For
example, the cuts c and c' in Fig. 1 are consistent and
inconsistent cuts, respectively. The state of the channels
corresponding to cut c consists of one message from p to
q, and another message from s to r. Readers are referred
to [2] for a formal discussion of consistent global states.

III. SYSTEM MODEL
The distributed system considered in this paper has the

following characteristics:
1) Processes do not share memory and communicate

via messages-sent through channels.
2) Channels can lose messages. However, they are

made (virtually) lossless and first-in-first-out by some end-
to-end transmission protocol (such as a sliding window
protocol [17]).

3) Processes can fail by stopping, and whenever a pro-
cess fails, all other processes are informed of the failure
in finite time. We assume that processes' failures never
partition the communication network.
We want to develop our algorithms under a weak set of

assumptions. In particular, we do not assume that the un-
derlying system is a database transaction system [4], [6].
This special case admits simpler solutions: the mecha-
nisms that ensure atomicity of transactions can hide in-
consistencies introduced by the failure of a transaction.
Furthermore, we do not assume that processes are deter-
ministic: this simplifying assumption is made in previous
results (e.g., [15] and [6]).

IV. IDENTIFICATION OF PROBLEMS
A checkpoint is a saved local state of a process. A set

of checkpoints, one per process in the system, is consis-
tent if the saved states form a consistent global state. Re-
starting a system from a set of inconsistent checkpoints
may cause problems as illustrated below.

Process p takes a checkpoint at time X and then sends
a message to q (Fig. 2). After receiving this message, q
takes a checkpoint at time Y. Subsequently, p fails and
restarts from the checkpoint taken at X. The global state
at p's restart is inconsistent because p's local state shows
that no message has been sent to q, while q's local state
shows that a message from p has been received. If p and
q are processes supervising a customer's account at dif-
ferent banks, and the message transfers funds from p to
q, the customer will have the funds at both banks when p
restarts. This inconsistency persists even if q is forced to
roll back and restart from its checkpoint taken at Y. Con-

x failure

p X1i<.

qk A,
y

Fig. 2. Inconsistent checkpoints.

F
p /N

q A
y

Fig. 3. Message loss due to rollback-recovery.

sistent checkpoints prevent such problems. Hence, our
goal is to derive an algorithm for creating consistent set
of checkpoints, and a rollback-recovery algorithm to re-
start the system from these consistent checkpoints.

Rollback-recovery from consistent checkpoints may
cause message losses, as shown in Fig. 3. Process q sends
a message m to process p, p receives m and fails at F, and
then p and q roll back and recover from X and Y, respec-
tively. At this point, q is in a state in which it has already
sent m, and p is in a state in which m has not been re-
ceived. Furthermore, the channel from q to p is empty.
Hence, the system recovers from the consistent state {X,
Y} in which the message m is lost. This state can also be
reached in an execution that had no rollback-recovery: q
sends m and reaches Y, p reaches X, and the channel loses
m. These two executions are indistinguishable top and q.
In both cases, the loss of m is masked by the end-to-end
transmission protocol that we have assumed for the chan-
nels. Hence, standard end-to-end protocols can handle
message losses that are due to channels, as well as losses
that are due to site failures and rollback-recovery.
The problem of ensuring that the system recoverg to a

consistent state after transient failures has two compo-
nents: checkpoint creation and rollback-recovery; we ex-
amine each one in turn.
A. Checkpoint Creation

There are two approaches to creating checkpoints. With
the first approach, processes take checkpoints indepen-
dently and save all checkpoints on stable storage. Upon a
failure, processes must find a consistent set of check-
points among the saved ones.'The system is then rolled
back to and restarted from this set of checkpoints [1], [5],
[13], [18].
With the second approach, processes coordinate their

checkpointing actions such that each process saves only
its most recent checkpoint, and the set of checkpoints in
the system is guaranteed to be consistent. When a failure
occurs, the system restarts from these checkpoints [16].

24

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 17, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

www.manaraa.com

KOO AND TOUEG: CHECKPOINTING AND ROLLBACK-RECOVERY FOR DISTRIBUTED SYSTEMS

xo XI X3 failure
p .. .

Yo YI Y2 Y3

Fig. 4. "Domino effect" following a failure.

x failure

nl,

checkpoints

y

Fig. 5. Histories of p and q up to p's failure.

The main disadvantage of the first approach is the
"domino effect" as illustrated in Fig. 4 [9], [10]. In this
example, processes p and q have independently taken a
sequence of checkpoints. The interleaving of messages
and checkpoints leaves no consistent set of checkpoints
for p and q, except the initial one at {X0, Y0}. Conse-
quently, after p fails, both p and q must roll back to the
beginning of the computation. For time-critical applica-
tions that require a guaranteed rate of progress, such as
real time process control, this behavior results in unac-
ceptable delays. An additional disadvantage of indepen-
dent checkpoints is the large amount of stable storage re-
quired to save all checkpoints.
To avoid these disadvantages, we pursue the second ap-

proach. In contrast to [16], our method ensures that when
a process takes a checkpoint, a minimal number of addi-
tional processes are forced to take checkpoints.

B. Rollback-Recovery
Rollback-recovery from a consistent set of checkpoints

appears deceptively simple. The following scheme seems
to work. Whenever a process rolls back to its checkpoint,
it notifies all other processes to also roll back to their re-
spective checkpoints. It then installs its checkpointed state
and resumes execution. Unfortunately, this simple recov-
ery method has a major flaw. In the absence of synchro-
nization, processes cannot all recover (from their respec-
tive checkpoints) simultaneously. Recovering processes
asynchronously can introduce livelocks; i.e., situations in
which a single failure can cause an infinite number of roll-
backs, preventing the system from making progress. Such
a situation is illustrated below.

Fig. 5 illustrates the histories of two processes, p and
q, up to p's failure. Process p fails before receiving the
message nl, rolls back to its checkpoint x, and notifies q.
Then p recovers, sends M2, and receives n1. After p's re-
covery, p has no record of sending mi, whereas q has a
record of its receipt. Therefore, the global state is incon-

p

qI

roll back
X tte2nd time

r12

checkpoints \

y

Fig. 6. Histories of p and q up to p's second rollback.

sistent. To restore consistency, q must also roll back to
its checkpoint y (to "forget" the receipt of ml). After q
rolls back, it has no record of sending n, whereas p has a
record of receiving nl. Hence, p must roll back a second
time to restore consistency (Fig. 6). Furthermore, q sends
n2 and receives M2, after it recovers. Messages n2 is re-
ceived by p after it rolls back. However, as a result of this
second rollback, p "forgets" the sending of M2. There-
fore, q must roll back a second time to restore consis-
tency. And this second rollback of q will cause the third
rollback ofp because p receives the message n2. It is now
clear that p and q can be forced to roll back forever, even
though no additional failures occur.
Our rollback-recovery algorithm solves this livelock

problem. It tolerates failures that occur during its execu-
tion, and forces a minimal number of processes to roll
back after a failure, whereas in [16], a single failure forces
the system to roll back as a whole and the system crashes
(and does not recover) if a failure occurs while it is rolling
back.

V. CHECKPOINT CREATION
A. Naive Algorithms
From Fig. 2 it is obvious that if every process takes a

checkpoint after every sending of a message, and these
two actions are done atomically, the set of the most recent
checkpoints is always consistent. But creating a check-
point after every send is expensive. We may naively re-
duce the cost of the above method with a strategy such as
"every process takes a checkpoint after every k sends,
k > 1" or "every process takes a checkpoint on the
hour." However, the former can be shown to suffer dom-
ino effects by a construction similar to the one in Fig. 4,
whereas the latter is meaningless for a system that lacks
perfectly synchronized clocks.

B. Classes of Checkpoints
Our algorithm saves two kinds of checkpoints on stable

storage: permanent and tentative. A permanent check-
point cannot be undone. It guarantees that the computa-
tion needed to reach the checkpointed state will not be
repeated. A tentative checkpoint, however, can be undone
or changed to be a permanent checkpoint. When the con-
text is clear, we call permanent checkpoints simply
"checkpoints."
Consider a system with a consistent set of permanent

checkpoints. A checkpoint algorithm is resilient to fail-

25

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 17, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

www.manaraa.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987

ures if the set of permanent checkpoints is still consistent
after the algorithm terminates, even if some processes fail
during its execution. To exclude the impractical "naive"
algorithm from our consideration, henceforth we consider
only those systems where processes either cannot afford
to take a checkpoint after every send, or cannot combine
the sending of a message and the taking of a checkpoint
into one atomic operation. The following theorem shows
that checkpoint algorithms for these systems must store at
least two checkpoints in stable storage to be resilient to
failures.

Theorem 1: No resilient checkpoint algorithms that take
only permanent checkpoints exist.

Proof: By contradiction. Suppose that such an algo-
rithm A exists. Consider the following scenario: p and q
are processes. Suppose that by time t, t > 0, p has re-
ceived a message mq from q, and q a message mp from p.
At t, process p invokes A to take a checkpoint. Suppose
that A terminates by time t', and that p takes a permanent
checkpoint Cp,tp at time tp, t < tp c t'. Since A is resili-
ent, the set of checkpoints at the termination of A must
be consistent. Therefore, process q must also have taken
a permanent checkpoint Cq,tq at time tq, t < tq c t'. Let
d be the minimum time required for the failure of a pro-
cess to be detected. Depending on whether tp c tq, or
tp > tq, we now construct another execution of A that
shows A is not resilient to failure.
Case 1: tp c tq. Let q fail in the time interval (max (t,

tq - d), tq). Process p discovers the failure after tq, hence
after tp. (See Fig. 7.) Consequently, Cp,,, is taken al-
though Cq,tq is not. Since Cp,,p is a permanent checkpoint
that cannot be undone, and q fails before making a per-
manent checkpoint, the sending of mq is "forgotten" for-
ever whereas the receipt of mq is "remembered" always,
no matter what A does after p detects the failure. Hence,
contrary to our assumption, Algorithm A is not resilient.

Case 2: tp > tq. Let p fail in the time interval (max (t,
tp - d), tp). The rest of the proof is analogous to Case
1. 'LE
Theorem 1 shows that in those systems we consider,

any resilient checkpoint algorithm must store at least two
checkpoints on stable storage.

C. Our Checkpoint Algorithm
We first assume that a single process invokes the al-

gorithm to take a permanent checkpoint. In Section VII,
we extend the algorithm for concurrent invocations. We
also assume that no site fails during the execution of the
algorithm. In Section V-C-4, we extend the algorithm to
handle such failures. The algorithm sends its messages
over (virtually) lossless and FIFO channels.

1) Motivation: The algorithm is patterned on two-
phase-commit protocols. In the first phase, the initiator q
takes a tentative checkpoint and requests all processes to
take tentative checkpoints. If q learns that all processes
have taken tentative checkpoints, q decides all tentative
checkpoints should be made permanent; otherwise, q de-
cides tentative checkpoints should be discarded. In the

Cn f- 4 .-i
p

p\ c/ qheckpoint p detects failure

q fails

mq
t tp tq-d tq

Fig. 7. The scenario when tp < tq and q fails.

second phase, q's decision is propagated and carried out
by all processes. Since all or none of the processes take
permanent checkpoints, the most recent set of check-
points is always consistent.
However, our goal is to force a minimal number of pro-

cesses to take checkpoints. The above algorithm is mod-
ified as follows: a process p takes a tentative checkpoint
after it receives a request from q only if q's tentative
checkpoint records the receipt of a message from p, and
p's latest permanent checkpoint does not record the send-
ing of that message. (Note that the definition of consis-
tency requires only that every message recorded as "re-
ceived" in a checkpoint should also be recorded as "sent"
in another checkpoint; and not vice versa.) Process p de-
termines whether this condition is true using the label ap-
pended to q's request. This labeling scheme is described
below.
Messages that are not sent by the checkpoint or roll-

back-recovery algorithms are system messages. Every
system message m contains a field, which is a label de-
noted by m. 1. Each process uses monotonically increasing
labels in its outgoing systems messages. We define I and
T to be the smallest and largest labels, respectively. For
any processes q and p, let m be the last message that q
received fromp after q took its last permanent or tentative
checkpoint. Define:

last__nrsgq(p) =
{n.1 if m exists

otherwise.

Also, let m be the first message that q sent to process p
after q took its last permanent or tentative checkpoint. De-
fine:

m. 1 if m exists
first smsgq(p) = otherwise.

When q requests p to take a tentative checkpoint, it ap-
pends last_rmsgq(p) to its request; p takes the check-
point only if last rmsgq(p) 2 first smsgp(q) > I.

2) Informal Description: Process p is a ckpt_cohort
of q if q has taken a tentative checkpoint, and
last_rmsgq(p) > 1 before the tentative checkpoint is
taken. The set of ckpt_cohorts of q is denoted ckpt co-
hortq. Every process p keeps a variable willing_
to ckptp to denote its willingness to take checkpoints.
Whenever p cannot take a checkpoint (for any reason),
willing to ckpt, is "no." The initiator q starts the

26

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 17, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

www.manaraa.com

KOO AND TOUEG: CHECKPOINTING AND ROLLBACK-RECOVERY FOR DISTRIBUTED SYSTEMS

Daemon process:

send(tititiator, "take a tentative checkpoint and T");
await(initiator, w1Ziffig-Lo_ckpt init entor);
if willing-to_ckptisutialor = "yes" then
send(utimator, "make tentative checkpoint permanent")

else
send(inittator, "undo tentative checkpoint")

fi.

All processes p:

INITIAL STATE:
firstLsrnsgp(claemon) = T;

"yes" if p is willing to take a checkpoint
u'llling-to.ckptP = "no" otherwise

UPON RECE1Pr OF "take a tentative checkpoint and lastLrmsg,(p)" from q DO
if wvilling-to_ckptp and last.rmsgq(p) first srinsgp(q)> then
take a tentative checkpoint;
for all rEckpt-cohortp send(r, "take a tentative checkpoint and lastLmsgp(r)");
for all r Eckpt-cohortp await(r, tvi11itng-to-ckpt,);
if 3 rEckpt-cohortp, willihg-to-ckpt, = "no" then wvllng-tockpt- "no" fi;

fi;

send(q, will1ing-to_ckptp);
OD.

UPON FIRST RECEIPT OF m ="make tentative checkpoint permanent" or

m ="undo tentative checkpoint" DO
if m ="make tentative checkpoint permanent" then
make tentative checkpoint permanent;

else
undo tentative checkpoint;

fi;
for all rEckpt.xohortp, send(r, m);

OD.

Fig. 8. Algorithm Cl: the Checkpoint Algorithm.

checkpoint algorithm by making a tentative checkpoint
and sending a request "take a tentative checkpoint and
last rmsgq(p)" to all p e ckpt cohortq. A process p in-
herits this request if willing to ckptp is "yes" and
last rmsgq(p) > first smsgp(q) > I. If p inherits a

request, it takes a tentative checkpoint and sends "takes
a tentative checkpoint and last_rmsgp(r)" requests to all
r E ckpt_cohortp. Ifp receives but does not inherit a re-

quest from q, p replies willing to ckptp to q.

After p sends out its requests, it waits for replies that
can be either "yes" or "no," indicating a ckpt_cohort's

acceptance or rejection of p's request. If any reply is
"no," willing_to ckptp becomes "no"; otherwise
willing_to ckptp is unchanged. Process p then sends
willing_to ckptp to the process whose request p has in-

herited. From the time p takes a tentative checkpoint to
the time it receives the decision from the initiator, p does
not send any system messages.

If all the replies from its ckpt__cohorts arrive and are

all "yes," the initiator decides to make all tentative
checkpoints permanent. Otherwise the decision is to undo
all tentative checkpoints. This decision is propagated in
the same fashion as the request "take a tentative check-
point" is delivered. A process discards its previous
checkpoint after it takes a new permanent checkpoint.
The algorithm (C1) is presented in Fig. 8 (await does

not prevent a process from receiving messages). For sim-
plicity, we create a fictitious process called daemon to
assume the initiation and decision tasks of the initiator.

In practice, daemon is a part of the initiator process.
3) Proofs of Correctness: We consider a single invo-

cation of the algorithm, and we assume no process fails.
Lemma 1: Every process inherits at most one request

to take a tentative checkpoint.
Proof: Immediately after a process p inherits a re-

quest it takes a tentative checkpoint. From the timep takes
this checkpoint to the time it receives the initiator's de-
cision, p does not send any system messages. Therefore,
during this interval of timefirst smsgp(q) = 1 for all q,
and p cannot inherit additional requests. E
Lemma 2: Every process terminates its execution of

Algorithm C1.
Proof: Any process that executes Cl without taking

a tentative checkpoint clearly terminates. Let p be a pro-
cess that takes a tentative checkpoint. By Lemma 1, p
takes a tentative checkpoint exactly once. Consequently,
to prove that Cl terminates at p, it suffices to prove that
after p takes a tentative checkpoint, it does not wait for-
ever for either the "yes" or "no" from its ckpt cohorts,
or the initiator's decision.

Let q be a ckpt cohort of p. If q inherits p's request
to take a tentative checkpoint, it sends willing to ckptq
to p before it waits for the initiator's decision. On the
other hand, if q does not inherit p's request, it sends will-
ing to ckptq to p immediately after receiving p's re-
quest. Therefore, there can be no deadlock involving p
waiting for q's reply and q waiting for the initiator's de-
cision.

Process p cannot be in a deadlock waiting for replies
from its ckpt cohorts either. To show this, note that if q
inherits a checkpoint request from p, p inherits a request
before q does. The inherit relation cannot be circular, and
hence no deadlock can arise. Therefore, p will receive
replies from all its ckpt_cohorts.

After the initiator receives replies from all its ckpt_co-
horts, it decides whether to make tentative checkpoints
permanent or not. This decision is guaranteed to reach all
processes that have taken tentative checkpoints since all
processes forward the decision, and channels are reliable.
Thus process p does not wait forever for replies from its
ckpt cohorts, or for the initiator's decision. O
The next lemma shows that Cl takes a consistent set of

checkpoints.
Lemma 3: If the set of checkpoints in the system is

consistent before the execution of Algorithm Cl, the set
of checkpoints in the system is consistent after the ter-
mination of Cl.

Proof: Without loss of generality, assume new
checkpoints are taken in Cl. The proof is by contradic-
tion. Suppose the set of checkpoints after Cl terminates
is not consistent. Then there are two processes p and q,
such thatp sent q a message m after making its permanent
checkpoint, and q received m before making its perma-
nent checkpoint. Since all checkpoints are consistent be-
fore the execution of C 1, q must have taken its permanent
checkpoint during this execution. Before q took a tenta-
tive checkpoint in Cl, last rmsgq(p) 2 m. 1; hence, p

27

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 17, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

www.manaraa.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987

was in ckpt cohortq and received a request to take a ten-
tative checkpoint from q. When p received the request,
willing to ckptp had to be "yes" because q could not
have made its tentative checkpoint permanent otherwise.
Furthermore, either p had already taken a tentative check-
point after sending m, or last rmsgq(p) 2 m. 1 2
first smsgp(q) > I. In both cases, p took a tentative
checkpoint after sending m. However, p makes its tenta-
tive checkpoint permanent if q makes its permanent. Con-
sequently, p took a permanent checkpoint after sending
m, a contradiction. O
We now show the number of processes that take new

if 3 r E ckpt cohortp, willing_to__ckptr

cur, a nonfaulty process may not receive some of the fol-
lowing messages:

1) "yes" or "no" from ckpt cohorts.
2) "make tentative checkpoint permanent" or "undo

tentative checkpoint" from the initiator.
Suppose that process p fails before replying "yes" or

"no" to process q's request. By the assumption of Sec-
tion III, q will know of p's failure. After q knows that p
has failed, it sets willing to ckpt1 to "no" and stops
waiting for p's reply. Therefore, to take care of a missing
"yes'" or "no," it suffices to change the statement in C1
from

= "no" then willing to_ckptp i- "no" fi
to

if 3 r E ckpt cohortp, willing_to ckptr = "no" or r has failed then

willing to ckptp +- "no" fi.

permanent checkpoints during the execution of Algorithm
C1 is minimal. Let P = {Po, Pi, . ..* Pk} be the set of
processes that take new permanent checkpoints during the
execution of C1, where P0 is the initiator. Let C(P) =
{c(po), c(pl), c.,C(pk)} be the new permanent check-
points taken by processes in P. Define an alternate set of
checkpoints: C'(P) = {c'(po), c'(pl), * * *, C'(pk)} where
c'(po) = c(po) and for 1 c i < k, c'(pi) is either c(pi)
or the checkpoint pi had before executing C1.
Theorem 2: C'(P) is consistent if and only if C'(P) =

C(P).
Proof: The ifpart is by Lemma 3. We now prove the

only if part. The execution of Cl imposes a "p inherits a
request from q" relation on the set of processes. Since
this relation is noncircular and there is only one initiator,
it can be represented as a tree T: the root of T is the ini-
tiator, and p is a child of q if and only if p inherits a
request from q. If p E T, it must make a new permanent
checkpoint during the execution of C1; hence p E P. If p
E P, either p is the initiator or it inherits a request; hence
p E T. Therefore, p e T if and only if p E P.

Our proof is by contradiction. Suppose that C'(P) *
C(P) and C'(P) is consistent. Let r E P such that c'(r) *
c(r). Note that r * po, and that there exists a path from r
to po in T. Since c'(po) = c(po), there is an edge (p, q)
on this path such that c'(p) * c(p), and c'(q) = c(q).
When p inherits q's request, last_ rmsgq(p) >
first smsgp(q) > I. Let m be the message that q re-
ceives from p such that last_rmsgq(p) = m. 1. Since m. 1
> first smsgp(q), the sending of m is not recorded in
C'(p). But the receipt of im is recorded in c'(q). Thus,
C'(P) is not a consistent set of checkpoints, a
contradiction. LI
Theorem 2 shows that ifpo takes a checkpoint, then all

processes in P must take a checkpoint to ensure consis-
tency.

4) Coping with Failures: We now extend Algorithm
Cl to handle processes' failures. We first consider the ef-
fects of failures on nonfaulty processes. When failures oc-

Suppose that process p does not receive the decision
regarding its tentative checkpoint. Ifp undoes its tentative
checkpoint or makes it permanent, it risks contradicting
the initiator. The two-phase structure of Cl requires p to
block until it discovers the initiator's decision [14]. We
will discuss ways to prevent blocking in Section VIII.
We now consider the recovery of faulty processes.

When a process restarts after a failure, its latest check-
point on stable storage may be tentative or permanent. If
this checkpoint is tentative, the restarting process must
decide whether to discard it or to make it permanent. The
decision is made as follows.
Suppose that the restarting process is the initiator. The

initiator knows that every process that has taken a tenta-
tive checkpoint is still blocked waiting for its decision.
Hence, it is safe for the initiator to decide to undo all
tentative checkpoints and send this decision to its
ckpt cohorts. If the restarting process is not the initiator,
it must discover the initiator's decision regarding tenta-
tive checkpoints. It may contact either the initiator or
those processes of which it is a ckpt_cohort; it follows
the decision accordingly to terminate Cl.
The restarting process is now left with one permanent

checkpoint on stable storage. It can recover from this
checkpoint by invoking the rollback-recovery algorithm
of Section VI.

Let C2 be the Algorithm C 1 as modified above. C2 ter-
minates if all processes that fail during the execution of
C2 recover. At termination, the set of checkpoints in the
system is consistent, and the number of processes that took
new permanent checkpoints is minimal. The proofs for
these properties are similar to those of Cl and they are
omitted.

VI. ROLLBACK-RECOVERY
We first assume that a single process invokes the al-

gorithm to roll back and recover (henceforth denoted re-
start). We also assume that the checkpoint algorithm and
the rollback-recovery algorithm are not invoked concur-

28

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 17, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

www.manaraa.com

KOO AND TOUEG: CHECKPOINTING AND ROLLBACK-RECOVERY FOR DISTRIBUTED SYSTEMS

rently. In Section VII, we describe concurrent invocations
of these algorithms. The algorithm sends its messages over
(virtually) lossless and FIFO channels.

A. Motivation
The rollback-recovery algorithm is also patterned on

two-phase-commit protocols. In the first phase, the initi-
ator q requests all processes to restart from their check-
points. Process q decides to restart all the processes if and
only if they are all willing to restart. In the second phase,
q's decision is propagated and carried out by all pro-
cesses. We will prove that the two-phase structure of this
algorithm prevents livelock as discussed in Section IV-B.
Since all processes follow the initiator's decision, the
global state is consistent when the rollback-recovery al-
gorithm terminates.
However, our goal is to force a minimal number of pro-

cesses to roll back. If a process p rolls back to a state
saved before an event e occurred, we say that e is undone
by p. The above algorithm is modified as follows: the
rollback of a process q forces another process p to roll
back only if q's rollback undoes the sending of a message
top. Process p determines if it must restart using the label
appended to q's "prepare to roll back" request. This label
is described below.
For any processes q and p, let m be the last message

that q sent to p before q took its latest permanent check-
point. Define

(m. 1 if m exists
last smsgq(p) = o

tTotherwise.
When q requests p to restart, it appends last smsgq(p) to
its request. Process p restarts from its permanent check-
point only if last_rmsgp(q) > last smsgq(p).

B. Informal Description
Process p is a roll cohort of q if q can send messages

to it. The set of roll__cohorts of q is roll-cohortq. Every
process p keeps a variable willing to rollp to denote its
willingness to roll back. Wheneverp cannot roll back (for
any reason), willing to rollp is "no." The initiator q
starts the rollback-recovery algorithm by sending a re-
quest "prepare to roll back and last smsgq(p)" to all p
E roll_cohortq. A process p inherits this request if
willing to rollp is "yes," last_rmsgp(q) >
last smsgq(p), and p has not already inherited another
request to roll back. After p inherits the request, it sends
"prepare to roll back and last_smsgp(r)" to all r E roll-

cohortp; otherwise, it replies willing to rollp to q.
After p sends out its requests, it waits for replies from

each process in roll_cohortp. The reply can be an explicit
"yes" or "no" message, or an implicit "no" when
p discovers that r has failed. If any reply is "no," will-
ing_to rollp becomes "no"; otherwise willing to
rollp is unchanged. Process p then sends willing to
rollp to the process whose request p inherits. From the
time p inherits the rollback request to the time it receives

Daemon process:

send(initiator, "prepare to roll back and I");
await(int'tiator, willing_to_roll,4,,j,,,,);
if willingto_rolliniti.tw = "yes" then
send(initiator, "roll back")

else
send(initiator, "do not roll back")

All processes p:

INITIAL STATE:
ready-to-rollp = true;
last_rmsgP(daemon) = T;

"yes" if p is willing to roll back
willing.to.rollp = [no" otherwise

UPON RECEIPT OF "prepare to roll back and last_smsgq(p)" from q DO
if willing-to-roll and last-rmsgp(q) >last_smsg0(p) and readvyto-rolI, then
ready.to-roll 4- false;
for all rE roll - cohort psend(r, "prepare to roll back and last-smsgp(r)");
for all r Eroll - cohort Pawait(r, willingJto-rollr);
if 3 rEroll-cohortp, wtiiling-to-roll, = "no" or r has failed

then willingto-rolles- "no" fi;
fi;
send(q, willingJorollp);

OD.

UPON RECEIPT OF m ="roll back" or
m ="do not roll back" and ready-to-rollp = false DO
if m = "roll back" then
restart from p's permanent checkpoint;

else
resume execution;

fi;
for all rEroll-cohortp, send'r, m);

OD.

Fig. 9. Algorithm R: the Rollback Algorithm.

the decision from the initiator, p does not send any system
messages.

If all the replies from its roll-cohorts arrive and are all
'yes," the initiator decides the rollbacks will proceed;
otherwise it decides no process will rollback. This deci-
sion is propagated to all processes in the same fashion as
the request "prepare to roll back" is delivered. If failures
prevent the decision from reaching a process p, p must
block until it discovers the initiator's decision. We dis-
cuss nonblocking algorithms in Section VIII.
The rollback-recovery algorithm is presented in Fig. 9.

Like the presentation of Algorithm Cl, we introduce a
fictitious process called daemon to perform functions that
are unique to the initiator of the algorithm.

C. Proofs of Correctness

We consider a single invocation of the rollback-recov-
ery algorithm. The variable ready to rollp ensures that
a process p inherits at most one request to roll back. As a
result, the variable also ensures that a process rolls back
at most once. To prove the termination of Algorithm R,
it suffices to show that Algorithm R is free of deadlocks.
Lemma 4: Algorithm R is deadlock free.

Proof. Similar to the proof of Lemma 2. O
We now show that the global state of the system is con-

sistent after the termination of R.
Lemma 5: If the system is consistent before the exe-

29

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 17, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

www.manaraa.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 1, JANUARY 1987

cution of Algorithm R, the system is consistent after the
termination of Algorithm R.

Proof: The proof is by contradiction. Suppose that
after Algorithm R terminates at every process, the global
state of the system-is inconsistent. There must be a mes-
sage m sent by a process q to p such that during the exe-
cution of R, q undid the sending ofm while p did not undo
the receipt of m. We first show that p inherited a request
to roll back. After q inherited a request to roll back, it
stopped sending system messages. Hence, it must have
sent a request to roll back top after sending m. Moreover,
since q undid the sending of m, m. I > last__smsgq(p). On
the other hand, process p could not have taken a perma-
nent checkpoint after receiving m and before receiving q's
request; the creation of this checkpoint and the fact that
q did not take a permanent checkpoint would contradict
Lemma 3. Consequently, last rmsgp(q) - m. 1 >
last smsgq(p). In addition, the variable willing to
rollp must have been "yes," for the initiator cannot have
decided to roll back. Therefore, when q's request reached
p, either p had already inherited a rollback request or it
inherited q's request.

Sincep and q received the same decision, p rolled back.
Next we show that p's rollback undid the receipt of m.
There are two cases to consider:

Case 1: m reached p after p inherited a rollback re-
quest. Since message channels are FIFO, m reached p be-
fore q's request did. The initiator made its decision after
p replied to q's request. Therefore, p rolled back after
receiving m.
Case 2: m reached p before p inherited a rollback re-

quest. We have shown that p did not take a permanent
checkpoint after receiving m. Hence, the rollback of p
undid the receipt of m. L
Lemma 5 ensures that a single execution of Algorithm

R brings the system to a consistent state after a failure;
since processors roll back at most once in any execution
of R, Algorithm R prevents livelocks.
Many existing rollback algorithms exhibit the follow-

ing undesirable property. If the initiator rolls back, it
forces an additional set of processes P to roll back with
it, even though the system will be consistent if some of
the processes in P omit to roll back. For example, the
algorithm in [16] requires all processes to roll back every
time any process wants to roll back. However, in some
cases, the initiator could roll back alone and the system
would still be consistent. With our algorithm, the number
of processes that are forced to roll back with the initiator
is minimal.

Theorem 3: Let E be an execution of R in which the
initiator po and an additional set of processes P roll back.
Consider an execution E', identical to E except that a non-
empty subset of processes in P omit to roll back upon
receipt of the "roll back" decision. The execution E'
leaves the system in an inconsistent state.

Pro-of: The execution of R imposes a "p inherits a
'prepare to roll back' request from q" relation on the set
of processes. Since this relation is noncircular and there

is only one initiator, it can be represented as a tree T.: the
root of T is the initiator, po, and p is a child of q if and
only ifp inherits a request from q. If p E T, it rolls back
during the execution of R; hence p e P U {PI}. If p E
P U p{po} eitherp is the initiator or it inherits a request;
hence p E T. Therefore, p E T if and only if p E P U
{Po}*
Our proof is by contradiction. Suppose P' C P is the

set of processes that omit to roll back in the execution E',
and the system is consistent at the end of E'. Let r E P'.
There exists a path from r to Po in T. Since r omits to roll
back andpo rolls back, there is an edge (p, q) on this path,
such that p omits to roll back and q rolls back. When p
inherits the "prepare to roll back" request from q,
last rmsgp(q) > last_smsgq(p). Let m be the message
that q sent to p such that m. I = last_rmsgp(q). When q
rolls back it undoes the sending of m. But since p omits
to roll back, it does not undo the receipt of m. Thus, at
the end of E', the global state of the system is inconsis-
tent, a contradiction.,I

VII. INTERFERENCE
In this section, we consider concurrent invocations of

the checkpoint and rollback-recovery algorithms. An ex-
ecution of these algorithms by process p is interfered with
if any of the following events occur:

1) Process p receives a rollback request from another
process q while executing the checkpoint algorithm.

2) Process p receives a checkpoint request from q while
executing the rollback-recovery algorithm.

3) Process p, while executing the checkpoint algorithm
for initiator i, receives a checkpoint request from q, but
q's request originates from a different initiator than i.

4) Process p, while executing the rollback-recovery al-
gorithm for initiator i, receives a rollback request from q,
but q's request originates from a different initiator than i.
One single rule handles the four cases of interference:

once p starts the execution of a checkpoint (rollback) al-
gorithm, p is unwilling to take a tentative checkpoint (roll
back) for another initiator, or to roll back (take a tentative
checkpoint). As a result, in all four cases, p replies "no"'
to q. We can show this rule is sufficient' to guarantee that
all previous lemmas and theorems hold despite concurrent
invocations of the algorithms. This rule can, however, be
modified to permit more concurrency in the system. The
modification is that in case 1), instead of sending "no"
to q, p can begin executing the rollback-recovery algo-
rithm after it finishes the checkpoint algorithm. We can-
not allow a similar modification in case 2) lest deadlocks
may occur.

VIII. OPTIMIZATION
When the initiator of the checkpoint or of the rollback-

recovery algorithm fails before propagating its decision to
its cohorts, it is desirable for processes not to block for
its recovery. To prevent processes from blocking, we can
modify our algorithms by replacing the underlying two-
phase commit protocol with a nonblocking three-phase

30

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 17, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

www.manaraa.com

KOO AND TOUEG: CHECKPOINTING AND ROLLBACK-RECOVERY FOR DISTRIBUTED SYSTEMS

commit protocol [14]. However, nonblocking protocols
are inherently more expensive than blocking ones [3].
We next address the following problem: after a

ckpt_cohort q of a process p fails, p cannot take a per-
manent checkpoint until q restarts (p cannot know if the
latest checkpoint of q records the sendings of all imessages
it received from q). To avoid waiting for q's restart, p can
remove q from ckpt_cohortp by restarting from its check-
point (using the rollback-recovery algorithm). After its
restart, process p can take new checkpoints.

XI. CONCLUSION
We have presented a checkpoint algorithm and a roll-

back-recovery algorithm to solve the problem of bringing
a distributed system to a consistent state after transient
failures. In contrast to previous algorithms, they tolerate
failures that occur during their executions. Furthermore,
when a process takes a checkpoint, a minimal number of
additional processes are forces to take checkpoints. Sim-
ilarly, a minimal number of additional processes are forces
to restart when a process restarts after a failure. We also
show that the stable storage requirement of our algorithms
is minimal.

ACKNOWLEDGMENT

We would like to thank A. El Abbadi, K. Birman, R.
Cleaveland, and J. Widom for commenting on earlier
drafts of this paper.

REFERENCES

[1] T. Anderson, P. A. Lee, and S. K. Shrivastava, "System fault tol-
erance," in Computing System Reliability, T. Anderson, and B. Ran-
dell, Eds. Cambridge, MA: Cambridge University Press, 1979, pp.
153-210.

[2] K. M. Chandy and L. Lamport, "Distributed snapshots: Deternining
global states of distributed systems," ACM Trans. Comput. Syst.,
vol. 3, no. 1, pp. 63-75, Feb. 1985.

[3] C. Dwork and D. Skeen, "The inherent cost of nonblocking com-
mitment," in Proc. ACM Symp. Principles of Database Syst., Mar.
1983.

[4] M. Fischer, N. Griffeth, and N. Lynch, "Global states of a distrib-
uted system," IEEE Trans. Software Eng., vol. SE-85, pp. 198-202,
May 1982.

[5] V. Hadzilacos, "An algorithm for minimizing rollback cost," in Proc.
ACM Symp. Principles ofDatabase Syst., Mar. 1982.

[6] T. Joseph and K. Birman, "Low cost management of replicated data
in fault-tolerant distributed systems," ACM Trans. Comput. Syst.,
vol. 4, no. 1, pp. 54-70, Feb. 1986.

[7] L. Lamport, "Time, clocks and the ordering of events in a distributed
system," Commun. ACM, vol. 21, no. 7, pp. 558-565, July 1978.

[8] B. Lampson and H. Sturgis, "Crash recovery in a distributed storage
system," Xerox Palo Alto Research Center, Tech. Rep., Apr. 1979.

[9] D. L. Presotto, "Publishing: A reliable broadcast communication
mechanism," Comput. Sci. Division, Univ. California, Berkeley,
Tech. Rep. UCB/CSD 83-165, Dec. 1983.

[10] B. Randell, "System structure for software fault tolerance," IEEE
Trans. Software Eng., vol. SE-1, pp. 226-232, June 1975.

[11] B. Randell, P. A. Lee, and P. C. Treleaven, "Reliability issues in
computing system design," ACM Comput. Surveys, vol. 10, no. 2,
pp. 123-166, June 1978.

[12] D. L. Russel, "Process backup in producer-consumer systems," in
Proc. ACM Symp. Operat. Syst. Principles, Nov. 1977.

[13] -, "State restoration in systems of communicating processes,"
IEEE Trans. Software Eng., vol. SE-6, pp. 183-194, Mar. 1980.

[14] D. M. Skeen, "Crash recovery in a distributed database system,"
Ph.D. dissertation, Comput. Sci. Division, University California,
Berkeley, 1982.

[15] R. Strom and S. Yemini, "Optimistic recovery in distributed sys-
tems," ACM Trans. Comput. Syst., pp. 204-226, Aug. 1985.

[16] Y. Tamir and C. H. Sequin, "Error recovery in multicomputers using
global checkpoints," in Proc. 13th Int. Conf. Parallel Processing,
Aug. 1984.

[17] A. S. Tanenbaum, Computer Networks. Englewood Cliffs, NJ:
Prentice-Hall; 1981, pp. 148-164.

[18] W. G. Wood, "A decentralized recovery control protocol," in Proc.
Ilth Ann. Int. Symp. Fault-Tolerant Comput., June 1981.

Richard Koo received the B.A. degree in math-
ematics from Colorado College, Colorado
Springs, in 1982.

He is a Ph.D. student in the Department of
Computer Science at Cornell University, Ithaca,
NY. His current research interests include fault-
tolerance, distributed algorithms, and distributed
operating systems.

Sam Toueg received the B.Sc. degree in com-
puter science from the Technion-Israel Institute
of Technology, Haifa, in 1976, and the M.S.E.,
M.A., and Ph.D. degrees in computer science
from Princeton University, Princeton, NJ, in

E | g 1977, 1978, and 1979, respectively.
He spent a postdoctoral year at the IBM

Thomas J. Watson Research Center, Yorktown
Heights, NY, in the Systems Analysis and Algo-
rithms Division. In 1981 he joined the Depart-
ment of Computer Science at Cornell University,

Ithaca, NY, where he is currently an Assistant Professor. His current re-
search interests include fault-tolerance, distributed computing, computer
networks, and distributed database systems.

Dr. Toueg is a member of the Association for Computing Machinery,
SIGACT, and SIGCOMM.

31

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 17, 2009 at 11:09 from IEEE Xplore. Restrictions apply.

